If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+15x+16=0
a = 3; b = 15; c = +16;
Δ = b2-4ac
Δ = 152-4·3·16
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{33}}{2*3}=\frac{-15-\sqrt{33}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{33}}{2*3}=\frac{-15+\sqrt{33}}{6} $
| 2=2x-3x+4 | | 6x+4=59 | | G(-x)=2x^2-2x+3 | | 2A=-5+11z | | -4+11x=14+8x | | 2a+7=3a+6 | | -2=7t+4+2t | | 7^(x-5)=49^x | | 13/9=3a-5/9 | | h-2=6 | | 4x+17=67 | | 7(-c-12)=-21 | | s+52=3s | | ∠A=5x−18 | | 9x−8x=18 | | (9x+12=15 | | (x+3)^2+7=-2 | | 1/3(9x+12=15 | | 3x2+×-10=0 | | k/2+9=39 | | 1.5x×x=2.5x | | 4(k-2)+5=9 | | -96=-8(n=7) | | 5x+4=2x+24 | | 5-2x=30 | | 2/39x-6)=3/4(x+16)= | | 2/3(3/8)^x=9/256 | | 6=3/5b | | 3.5m=-56 | | 9.5m=-180.5 | | 6a/5=9/5=1/5 | | 2(5x-4)=-x-1 |